68 ISSN 1990-5548 Electronics and Control Systems 2015. N 3(45): 68-74

UDC 629.735.3.+681.3.06.519.85 (045)

'D. A. Prosvirin,
2y. P. Kharchenko

OPTIMIZED SAFETY — CRITICAL EMBEDDED AUTOMATIC FLIGHT CONTROL SYSTEM
DEVELOPMENT APPROACH TO COMPLY WITH ARP 4754, DO-178C OBJECTIVES

Air Navigation Systems Department, National Aviation University, Kyiv, Ukraine
E-mails: 'dimitry.prosvirin@gmail.com, *kharch@nau.edu.ua

Abstract—This article deals with model based embedded software development approach of aircraft au-
tomatic flight control systems with using new model-based approach. Realization of air-borne equipment
software requirements, regulated by functional safety standards such as ARP 4754, DO-178C is showed.
This article explains how mentioned requirements can be obtained using SCADE. The possibility of do-
cumentation and qualified code generation from SCADE Display and SCADE Suite models is showed.
Use of the mentioned approach allows facilitating embedded software development and certification

process.

Index Terms—Automatic flight control system; model-based design, SCADE, code generation, software
certification, executable specification, verification, documentation, ARP 4754, DO-178C.

I. INTRODUCTION

The avionics industry requires that safety-critical
software be assessed according to strict certification
authority guidelines before it may be used on any
commercial airliner. ARP 4754 and DO-178C are
guidelines used both by the companies developing
airborne equipment and by the certification authori-
ties. Presently, numerous people play a role in defin-
ing and creating safety-critical systems for the avio-
nics industry. The function and architecture of a
system are defined by system engineers using some
informal notation for the graphics and associated
logic. The embedded production software is then
specified textually and hand-coded by software en-
gineers in the coding language augmented by a
graphical library. In this context, search for new
safety software development methods is important
and actual task. These methods may help to reduce
influence on the final product of next factors: in-
exact understanding by executor of customer re-
quirements; late mistakes detecting and as a result,
expensive process of alteration; considerable cost of
certification. Also mentioned methods shall include
a technology of qualified code generation from for-
mal models that may carry strong Return on Invest-
ment (ROI), while preserving the safety of the appli-
cation.

In addition, the U.S. Federal Aviation Adminis-
tration (FAA), European Aviation Safety Agency
(EASA) and other international authorities of avia-
tion security insist on the use of functional safety
standards, that to ensure the proper functioning of a
complicated electronic equipment of aviation sys-
tems in any foreseeable conditions, to exclude de-
fects and the possibility of the aircraft crashes.

II. PROBLEM STATEMENT

Today aviation companies gradually come to
model-based embedded software development proc-
ess for onboard systems. So, search for a new appli-
cations witch support a model-based development
paradigm is a relevant task. This article deals with
the approach description through a software model,
including the graphics and the associated logic, and
to automatically [ts [p[] u wall [

© National Aviation University, 2015
http://ecs.in.ua

D.A. Prosvirin, V.P. Kharchenko Optimized safety-critical embedded automatic flight control system ... 69

of cost and productivity improvement in the devel-
opment of safety critical software for avionics sys-
tems and associated methods are considered [8].
Existing methods based on data flow block diagrams
and allow saving rewriting the description of the
controller when going to software development [9].
The majority of researches reviews the activities
traditionally performed in such developments and
how individual tools can increase productivity in
such a context. In this scope of rigorous software
development, various verification techniques have

(E] FieView Q) Framework T Instances SimuTime_out

been proposed to streamline software verification
while preserving the safety of the application [10].

This objective shall be achievable only if the
proper engineering and design processes are de-
ployed in conjunction with the proper develop-
ment tools. This paper presents a combined ap-
proach to these needs and concludes with a status
of current research activities on the topic and a
summary of the benefits provided by this approach
for automatic control systems.

LT\ essoges RWIC D A B Sindstr e/

AlFnentoatasimuint

Flight Data Simulator / Simul Time / 37668.0

Flight Data Simulator / drift angle /-0.7684

A

Flight Data Simulator / Radio Alt_out/ 79252

UKKM 600
FMS 1INDEP

|

_,-/"—/
Flight Data Simulator / Radio Beacon Green f -345.51
ﬁ\\;
| 660 1680 l700) 720 ‘ 1740 1760 1780

376678

For Help, press F1

Fig. 1. Standalone virtual test bench for flight simulation:
(a) flight data (test scenarios) simulator; (b) aircraft view; (c) cockpit view

70 ISSN 1990-5548 Electronics and Control Systems 2015. N 3(45): 68-74

HaspaHnue Tun 3HaueHue KommeHTapum
ROLL_MIN real -45.0

THROTTLE_FACTOR real 0.15

WX_FACTOR real 0.1

WZ_FACTOR real 0.1

ZERO_PITCH real 0.0

ZERO_ROLL real 0.0

3:443: Course Oneparop
Declared as public 6ok

3.3, padunqeckoe npeacTasneHne

3.1.3.1.1.

Bup diagram_Course_1

PucyHok 1: Bua diagram_Course_1

3132
Tabnuua 3: Broas! Course

WHTepdeiic

Ha3spanue Tvn KommeHTapum
PlaneSpeed_Ms real

I Roll | real l

Tabnuua 4: Boixoaw: Course
HasBanue Tvn KommeHTapum

PlaneAngle real

{" ohject 1, priority 0, Name: rectangle, Type: rectangle ¥/

sglsetactivemasks (pContext->_parentmasks);
/% filled object part %/
sglDisable(SGL_TEXTURE_2D);
sglIndexcolori(51);
sgl1Disable(SGL_POLYGON_SMOOTH);
sglTransparency8(255);
sg1Begin(SGL_POLYGON);
sglvertex2f(0.0F, 200.0F);
sglvertex2f(90.0F, 200.0F);
sglvertex2f(90.0F, -200.0F);
sglvertex2f(0.0F, -200.0F);
sglEnd();
/% outTined object part ¥/
sglIndexcolori(4l);
sglIndexLinewidthi(0);
sglIndexLinestipplei(0);
sglDisable(SGL_LINE_STIPPLE);
sglDisable(SGL_LINE_HALOING);

sg1Begin(SGL_LINE_LOOP);

sg1vertex2f(0.0F,’—ZO0.0F);,
sgleEnd();
/% object 2, priority 0, Name: panel group, Type: panel ¥/
sglpushmatrix();

sglTranslatef(0.0F, -200.0F);
sglBeginscissor(90.0F, 400.0F);

sglPushmatrix();

{“ object 4, priority 0, Name: Lines, Type: container ¥/

/% object 5, Priority 0, name: line, Type: Tine %/

/% outlined object part ¥/

sglIndexLinewidthi(l);

sglBegin(SGL_LINES);
sglvertex2f(2.0F, 211.0F);
sglvertex2f(5.0F, 211.0F);

{“ object 6, priority 0, Name: line, Type: line ¥/

b

Fig. 2. Text and code generation:
(a) generated documentation fragment; (b) automatically generated code fragment

IV. SOLUTION PROCEDURE

Formal Model-Based Development (FMBD)
with SCADE consists of a rigorous unambiguous
graphical semantic which combines data and control
flow as well as a formal action language used to
represent the architectural and behavioural aspects
of a software-centric system. SCADE models for-
malize a significant part of the software architecture
and design. The model is written and maintained
once in the project and shared among all team mem-
bers: from the specification team to the review and
testing teams. Expensive and error-prone rewriting is
thus avoided, interpretation errors are minimized.
This formal definition can even be used as a contrac-
tual requirement document. Basing the activities on
an identical formal definition of the software may
save a lot of rework, and acceptance testing is faster
using simulation scenarios. In the software require-
ments process, partial SCADE modelling is a good
support for the identification of system functions, its
interfaces, and data flows.

V. SIMULATION RESULTS

Mentioned above advantages can be achieved by
SCADE (Safety Critical Application Development
Environment), environment for the development of
safety-critical avionics software that includes the
following components: SCADE Display for graphics

design and SCADE Suite for onboard systems logic
design.

SCADE models formalize a significant part of
the software architecture and design. The model is
written and maintained once in the project and
shared among all team members: from the specifica-
tion team to the review and testing teams. Expensive
and error-prone rewriting is thus avoided, interpreta-
tion errors are minimized. This formal definition can
even be used as a contractual requirement document
with subcontractors, for example between the air-
craft manufacturer and control systems supplier.
Basing the activities on an identical formal defini-
tion of the software may save a lot of rework, and
acceptance testing is faster using simulation scena-
rios. Some companies start using Esterel SCADE to
prototype control systems during the definition
phase. In the software requirements process, partial
SCADE modeling is a good support for the identifi-
cation of system functions, its interfaces, and data
flows. SCADE -model control algorithm can be
graphically specified using data flow diagrams.

The functional parts of the software, such as im-
plementation of the geometrical transformations
described, logic, filtering, and regulation can be
fulfillment with SCADE Suite. SCADE Display is
well-adapted for all the graphical display part of the
software. It is well-suited to completely specify the

D.A. Prosvirin, V.P. Kharchenko Optimized safety-critical embedded automatic flight control system ... 71

dynamic behavior of the developed control laws for
automatic flight control system as illustrated on the
Fig. 1.

It is now helpful to dynamically exercise the be-
havior of a SCADE Display/SCADE Suite model to
verify its operation. As soon as a SCADE Suite model
(or pieces of it) is available, it can be simulated with
SCADE Suite Simulator. Simulation can be run inte-
ractively or in batch. Scenarios (input/output se-
quences) can be recorded, saved, and replayed later
on the Simulator or on the target. For simulation sce-
narios, you can use aircraft flight testing data, so the
SCADE Suite and SCADE Display models can be co-
simulated to provide a fully realistic view of both
graphics and logics. Combination of SCADE Display
and SCADE Suite modeling can be use in the soft-
ware design process to develop major parts of the
requirements and the architecture. Use of both men-
tioned instruments allows execute joint logic and
graphic debugging.

So, the SCADE architecture is defined, the main
modules are refined to formalize the requirements.
SCADE-model control algorithm and dynamic be-
havior of the Display application are specified. The
objective of this activity is to produce a complete
and consistent software model. The requirements of
the project are described as executable model which
can be send to aircraft electronic flight instrument
system designer. For more clearness, usability and
reporting there is a possibility to generate text speci-
fication from SCADE model that can be then agreed
and signed between customer and developer (if it’s
needed).

Documentation is automatically and directly gen-
erated from the SCADE models (Fig. 2): it is correct
and up-to-date by construction with the next bene-
fits:

— flexible document generator settings;

— different language support;

— include all blocks and interfaces description;

— include function call tree and etc.

The SCADE model completely defines the ex-
pected behavior of the generated code. Code is au-
tomatically and directly generated from the models,
with the KCG qualified Code Generators: the source
code is therefore correct and up-to-date by construc-
tion (Fig. 2). Object code verification is based on a
sample of source C code constructs that can be gen-
erated from SCADE Suite and SCADE Display
models and that has to be tested on the target (e.g. on
the nature bench before it will be imported on the
aircraft equipment).

The key feature of model and generated code is
determinism. It means that with the same inputs
parameters we receive the same output result, so
availability of uncontrolled input information is
impossible. Determinism provides the possibility of
verification at model level. That to guarantee men-
tioned important feature model shall meet the next
requirements:

Signals are typed i.e. only basic C program lan-
guage are used (boolean, integer, double, char) and
their combination.

Global variable value can be read only.

It’s necessary to specify maximum quantity of
iterations.

SCADE models are based on structured pro-
gramming.

From SCADE model we receive generated C
code, which meets mentioned requirements and has
static memory allocation, independent of hardware
platform.

Fig. 3 illustrates comparison of classic program-
ming method in which human factor (difference
understanding) affect on additional functions ap-
pearance. Debugging of these additional functions is
possible only during verification. It means that veri-
fication is the most time-taking stage. With SADE
code generator it’s possible to deployment all verifi-
cation at the level of SCADE model. In this case it
meets the main task of model-based approach - is
formalization of text specification - i.e. usage of
formal language instead natural.

The code generator qualified for avionic systems
translate models into embedded C code is DO-178C
compliant and allows shortening the certification
process of avionics projects which make use of it.
Using such a code generator allows the end user (the
one that develops the critical embedded application)
to reduce the development costs by avoiding the
verification that the generated code implements the
SCADE model (considered here as a specification).
The verification and validation activities are reduced
to provide evidence that the model meets the func-
tional requirements of the embedded application.

In this way, a large part of the certification
charge weighs on the SCADE framework and this
charge is shared (through the tool provider) between
all the projects that make use of this technology.

When the SW design and verification is com-
pleted, the code can be compiled and loaded on the
target. ARINC 653 configuration files and “Glue
code” must be written to integrate the code generat-
ed by SCADE Suite into the actual Modules of the
Equipments.

72 ISSN 1990-5548 Electronics and Control Systems 2015. N 3(45): 68-74

hand coding

Static picture Text specification

Specification

SCADE modelling

Verification of SCADE model

time-consuming
stage of
documentation
revision
Code verification

Paper work

Source code

Bench test

/

Automatic code and
documentation generation

Fig. 3. Two software development process comparison - hand coding and
SCADE modelling

VI. CONCLUSIONS

Today’s systems and software engineers face
mounting pressure to develop automatic flight con-
trol systems in a timely and cost effective manner.
By utilizing model-based systems engineering, em-
bedded software development processes and quali-
fied code generation, they can meet these challenges.
With proposed in this paper approach and its quali-
fied code generators, developers can reduce devel-
opment time and speed time-to-certification.

Application of the mentioned software develop-
ment technology allows considerably reduce its de-
velopment and maintenance due to effective organi-
zation of the most labor-intensive process — verifica-
tion. It allows reduce costs of all software life cycle
no less than 40 % as compared to the hand coding
[2]. This economy consists of the followings factors:
1) development of the detailed specification, deter-
mination of software architecture and verification
are passing at the level of model, it allows for saving
the time spent on significant verification efforts be-
cause models can be verified as soon as they are
available (even in parts) thus avoiding situations
where code has to be developed before any verifica-
tion can start and every error that is detected requires
a lengthy change cycle; 2) replacement of the hand
coding with code generator and automatic code veri-
fication, that allows to conduct the module and
integral testing at the level of model; 3) automation
of writing considerable part of project documenta-
tion, that allows to reduce certification costs, espe-
cially during alteration.

Ultimately, with this model-based approach
models of software components are naturally de-
signed and verified to address the requirements.
These components are easily traced to requirements
and are well-defined in terms of their interfaces and
behavior. This subject of modularity and design for
re-use is another paper topic on its own, however
this proven FMBD methodology ensures that model-
based components, with their associated require-
ments and documentation, are more easily created
and maintained in formal models than traditional
manual coding and development methodologies. The
modularity provided by FMBD increases platform
agility, platform extensibility, and component reuse
in multiple aircraft and ground systems, while at the
same time reducing cost of deployment and main-
tenance of the software [3].

REFERENCES

[11 G. Ellis, Observers in Control
A Practical Guide, Academic Press, 2002, 264 p.

[2] Efficient Development of Safe Avionics Display
Software with DO-178B Objectives Using SCADE
Suite™: Methodology Handbook, France: Esterel
Technologies, 2012, 110 p.

[3] Jim McElroy, Relieving pressure for UAV
software development, December 1, 1992.

Systems.

[4] D. Luenberger, “Observing the State of a Linear
System”, IEEE Transactions on Military Electronics,
vol. 8, pp. 74-80. 1964.

[5] D. Luenberger, “Observers for Multivariable

Systems”, IEEE Transactions on Automatic Control,
vol. AC-11, pp. 190-197, 1966.

D.A. Prosvirin, V.P. Kharchenko Optimized safety-critical embedded automatic flight control system ... 73

[6] D. Luenberger, “Introduction to Observers”,
IEEE Transactions on Automatic Control, vol. AC-16,
pp. 596-602, 1971.

[71 H. Lens, and J. Adamy, “Observer Based
Controller Design for Linear Systems with Input
Constraints”, Proceeding of the 17th World Congress,
International Federation of Automatic Control, 611
July. 2008, pp. 9916-9921.

[8] D. McLean, Automatic Flight Control Systems,
Prentice Hall, NY, 1990, 593 p.

[9] Software considerations in airborne systems and
equipment certification (RTCA/DO-178B): DO-178B,
December 1, 1992. Washington. D.C. 20036 USA, 1992,
112 p.

[10]V. L. Syrmos, C. Abdallah, P. Dorato, and K.
Grigoriadis. “Static Output Feedback — A Survey”,
Automatica, vol. 33, 1997, pp. 125-137.

[11]C. C. Tsui, “Observer Design — A Survey”,
International Journal of Automation and Computing,
vol. 12 (1), 2015. pp. 50-61.

Received June 4, 2015

Prosvirin Dmitry. Post-graduate student.

Department of Air Navigation Systems, National Aviation University, Kyiv, Ukraine
Education: National Aviation University, Kyiv, Ukraine (2010).

Research interests: navigation and flight control.

Publications: 10.

E-mail: dimitry.prosvirin@gmail.com

Kharchenko Volodymyr. Doctor of Engineering. Professor.

Holder of a State Award in Science and Engineering of Ukraine.

Acting Rector of the National Aviation University, Kyiv, Ukraine.

Head of the Department of Air Navigation Systems, National Aviation University, Kyiv, Ukraine.

Professor of Traffic College of Ningbo University of Technology, Ningbo, China.

Education: Kyiv Civil Aviation Engineers Institute with a Degree in Radio Engineering, Kyiv, Ukraine (1967).
Research area: management of complex socio-technical systems, air navigation systems and automatic decision-making
systems aimed at avoidance conflict situations, space information technology design, air navigation services in Ukraine
provided by CNS/ATM systems.

Publications: 474.

E-mail: knarch@nau.edu.ua

. A. IIpoceipin, B. II. Xapyenko. OnTuMizoBaHuii MiaXiA 10 po3podKkH MPOrpaMHOro 3ade3nev4eHHs: 3 KPpUTHY-
HMMH BUMOTaMH 110 Oe3Meni /1 CHCTeMH AaBTOMATHYHOI0 KepyBaHHsA y BianosinHocTi 10 ctangaptis ARP 4754,
DO-178C

[IpencraBneHo HOBHI MOJIENEHO-OPIEHTOBAHHMHI MiJXif 10 PO3POOKH MPOrpaMHOro 3a0e3MeYeHHs! A1l CHCTEM aBTOMa-
TUYHOTO KepyBaHH JiTaka. [lokazaHo peasizalito BUMOT 10 IIPOrpaMHOro 3a0e3eueHHs] OOPTOBUX CHCTEM Y BiTOBI-
nHocti 1o cranaaptiB ARP 4754, DO-178C. Y craTTi IpoaeMOHCTPOBAHO sIK BKa3aHi BUMOTY MOXKYTh OyTH BHKOHaHI 3
BukopuctanHsiM TexHonorii SCADE. ITokazaHo MOXJIHMBICTh TeHepalii TeKCTOBOI JOKyMeHTalii Ta KBaii(iKoBaHOrO
KoIy. BHKOpHCTaHHS NpencTaBIeHOr0 MigXOLy JO3BOJSE TOJETIIMTH Ta 3HAYHO HMPHCKOPUTH TPOLEC PO3POOKH Ta
ceprudikallii nmporpaMHoro 3abe3nedeHHs OOPTOBUX CHUCTEM.

KurouoBi cjioBa: cucremMa aBTOMAaTHYHOI'O KEPYBaHHS; MOJAEIbHO-OpieHTOBaHe npoektyBaHHS; ARP 4754, SCADE;
TeHepallis KOIy; cepTudikallis IporpaMHOro 3a0e3NeUYeHHs; BUKOHYBaHa crenudikaris, Bepudikallis, TOKyMEHTAITis.

Ipoceipin /Imutpo AnapiiioBuy. AcripaHrT.

Kadenpa aeponasiraniiinux cucreM, HarionanbpHuii aBianiiauii yHiBepcutet, KuiB, Ykpaina.
Ocgita: HanioHanpHul aBiamiiHuil yHiBepcureT, Kuis, Ykpaina (2010).

Hamnpsmok HayKOBOI JisUTBHOCTI: HABITAIlis Ta YIIPABIIHHI PYyXOM.

Kinpkicts myomikamii: 10.

E-mail: dimitry.prosvirin@gmail.com

Xapuenko Boxogumup IerpoBud. JJokrop TexHiunuX Hayk. [Ipodecop.

Jlaypear JlepxaBHoi npemii YKpaiHu B raiay3i HayKd 1 TEXHIKH

Bukonyrounii 000B’s13ku pekropa HamionansHoro aBiariiiHoro yHiBepcurery, KuiB, Ykpaina.

3aBigyBau kadeapu aepoHaBiramiiinux cucreM, HanioHanpHul aBialfifinuii yHiBepcureT, Kuie, Ykpaina.

IIpodecop Traffic College of Ningbo, University of Technology, Ningbo, Kuraii.

Ocgita: KuiBChbKHit IHCTUTYT iH)KEHEPiB IUBLIBHOL aBiallii, Kuis, Ykpaina (1967).

HanpsMox HaykoBOI MisZIBHOCTI: YIPaBJIIHHSA CKJIaTHHUMH COINaJbHO-TEXHIYHUMHM CHCTEMaMH, acepOHaBiramiiHUMU
CHUCTEMaMH Ta aBTOMAaTHYHUMHU CHCTEMaMHM MPHHHATTS PIllICHb, CIIPSIMOBAHUX Ha 3al00iraHHs KOH(IIKTHUX CHTYaIIH,

74 ISSN 1990-5548 Electronics and Control Systems 2015. N 3(45): 68-74

CTBOpEHHS iH(pOpMaIiHHIX TEXHOJIOTIi aepOKOCMIYHHX CHCTEM, aepOHaBirainiiiHe 00CIyroByBaHHS MOJBOTIB B Y KpaiHi
Ha OCHOBI cynyTHHKOBHX cructeM CNS/ATM.

Kinpkicts myomikarii: 474.

E-mail: knarch@nau.edu.ua

. A. IIpoceupun, B. I1. Xapyenko. OnTHMHU3UPOBAHHBIN MOAX0A K pa3padoTke MPOrpaMMHOro odecrneveHus, ¢
KPUTHYECKUMHU TPeOGOBAHUAMU K 0€30MACHOCTH, /s CUCTEMbI ABTOMATUYECKOr0 YNIPABJIEHHUS B COOTBETCTBUU
co ctranapapramu ARP 4754, DO-178C

[IpencraBiaeH HOBBIM MOIEIbHO-OPUCHTUPOBAHHBIN MOIXOJ K pa3pabOTKe MPOrpaMMHOIO O0ECHeUCHUS U CHCTEM
aBTOMATHUYHOI'O YIpaBJICHUS camoleta. [loka3aHa peanuszaius TpeOOBaHHA K IPOrPaMMHOMY O00CCIICUCHUIO OOPTOBBIX
CUCTEM B cOOTBeTCTBUH co ctaHnapraMu ARP 4754, DO-178C. B craThe npoeMOHCTPHPOBAHO KaK yKa3aHHBIC TPEOO-
BaHHUS MOTYT OBITH BBIMTOJHEHBI ¢ HCIoiab30BanueM TexHojoruun SCADE. TToka3aHa BO3MOKHOCTh T€HEPAIUU TEKCTO-
BOM JIOKyMEHTAIIMU U KBATN(UKAIIMOHHOTO Koja. Vcronb30BaHue MpeACTaBICHHOIO MOAX0a TO3BOJIIET 00JIErYUuTh U
3HAYUTEIBHO YCKOPHTH IPOIIECC pa3paboTKu U cepTUUKAIIUY TPOrPAMMHOr0 00eCIeYeHHS OOPTOBBIX CUCTEM.
KiiloueBble ci0oBa: cucreMa aBTOMAaTHYECKOIO YIPaBIEHUS; MOJEIbHO-OPUEHTHUPOBOUHOE MpoekThupoBaHue; ARP
4754, SCADE; renepars koja; cepTu(GUKANUI IPOrPaMMHOI0 00eCIICUCHUS; UCTIOMHUTEIbHAS CIICIIU(UKAIINS, BEPH-
(bukaiys, J0KyMeHTAIIUs.

IIpocBupun JIMuTpuii AngpeeBrd. ACIUpaHT.

Kadenpa asponaBuranonssix cucreM, HarpioHaIpbHBINH aBHAllMOHHBIH yHUBepcuTeT, Kue, YkpauHa.
O0pasoBanue: HarmoHansHbI aBUalMOHHBIH yHUBEpCHUTET, Kues, Ykpanna (2010).

Hanpagienue HaygyHOI AeATENBHOCTH: HABUTALlUA U YIIPaBIEHUE IBHKEHUEM

KonmuecrBo myoiukarmii: 10.

E-mail: dimitry.prosvirin@gmail.com

Xapuenko Baagumup IerpoBuu. Jlokrop Texunueckux Hayk. [Ipodeccop.

Jlaypeat I'ocymapcTBeHHO# TpeMun Y KpauHbl B 00JIACTH HAYKU M TEXHUKU

Ucnonusromuii 06s13aHHOCTH pekTopa HarroHansHOro aBualimoHHoOro yHuBepeurera, Kues, YkpanHa.

3aBenyromnuii kadeapoi adpOHABUTAIIMOHHBIX CUCTeM, HallMoHaTbHBINH aBUAITMOHHBIN yHUBEepcuTeT, Kues, YkpaunHa.
IIpodeccop Traffic College of Ningbo, University of Technology, Ningbo, Kuraii.

OO0pa3oBanue: KreBckuii HHCTHTYT HH)XEHEPOB TpaykIaHCKOW aBuanu, Kues, Ykpanna (1967).

HanpagieHnue HaydHOH NEATEIBHOCTH: YIPABJICHUE CIOKHBIMHM COLUMAIBHO-TEXHUUYECKUMH CHCTEMaMH, adpOHAaBHIa-
LIMOHHBIMU CHCTEMaMH M aBTOMAaTHYECKUMH CHUCTEMaMU NPHUHSATHs PEIICHWH, HANpaBICHHBIX Ha IPEIOTBpAlleHUE
KOH(IMKTHBIX CHTYalllii, CO3J]aHue WHPOPMAIIMOHHBIX TEXHOJIOIHH a3pPOKOCMHUUYECKHX CHUCTEM, adpOHABHTallMOHHOE
00CITy>)KUBaHHUE MOJICTOB B YKpaWHE Ha OCHOBE CITYTHUKOBBIX cucteM CNS/ATM.

KonmuecrBo nmyoiukanwii: 474.

E-mail: knarch@nau.edu.ua

