Design of digital longitudinal autopilots based on l1-optimization approach

Design of digital longitudinal autopilots based on l1-optimization approach

L. S. Zhiteckii, K. V. Melnyk, A. Yu. Pilchevsky, I. R. Kvasha



This paper deals with the l1-optimal control to be implemented via the digital longitudinalautopilot capable to ensure a desired pitch attitude of aircraft in the presence of an arbitrary externalunmeasured disturbance. The optimization is achieved by determining the two parameters of the digital PIcontroller needed to stabilize the pitch rate and also the one parameter of P controller required for thestabilization of the pitch attitude. An illustrative numerical example and simulation results are given todemonstrate the effectiveness of this approach


Aircraft; longitudinal dynamics; digital autopilot; discrete time; PI controller; l1-optimization


Stevens, B. L.; Lewis, F.L. Aircraft Control and Simulation, 2nd ed., New York: John Willey & Sons, 2003.

William, D. E.; Friedland, B.; Madiwale, A. N. “Modern conrtol theory for design of autopilots for bank-to-turn missiles.” J. Guidance Control. 1987. vol. 10. pp. 378–386.

Teoh, E. K.; Mital, D. P.; Ang, K. S. “A BTT CLOS autopilot design.” The EEE Journal. 1992. vol. 4. pp. 1–7.

Ang, K. S. Development of a Flight Control System Using Modern Control techniques. M. Eng. Thesis, School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore. 1993.

Tunik, A.; Ryu, H.; Lee, H. “Parametric optimization procedure for robust flight control system design.” KSAS Int. Journal. 2001. vol. 2. no. 2. pp. 95-107.

Dahleh, M.A.; Pearson, J.B. “l1-optimal feedback controllers for discrete-time systems.” Proc. American Control Conference. Seattle, WA, pp. 1964-1968, 1986.

Vidyasagar, M. “Optimal rejection of persistent bounded disturbances,” IEEE Trans. on Autom. Control. 1986. Vol. 31. pp. 527-534.

Teo, Y. T.; Tay, T. T. “Design of a l1-optimal regulator: the limits of performance approach.” IEEE Trans. on Autom. Control. 1995. vol. 40.

pp. 2114-2119.

Khammash, M. H.; “A new approach to the solution of the l1 control problem: the scaled-Q method,” IEEE Trans. on Autom. Control. 2000. Vol. 45. pp. 180-187.

Yuz, J. I.; Goodwin, G. C. Sampled-Data Models for Linear and Nonlinear Systems. London: Springer, 2014.

Jury, E. I. Sampled-Data Conrol Systems. New York: John Willey & Sons Inc., 1958.

Blakelock, J. H. Automatic Control of Aircraft and Missiles. 2nd ed., New York: John Wiley & Sons, Inc., 1991.

Melnyk, K.V.; Zhiteckii, L.S.; Bogatyrov, A.M.; Pilchevsky, A.Yu.; “Digital control of lateral autopilot system applied to an UAV: optimal control strategy.” Proc. 2013 2nd IEEE Int. Conf. “Actual Problems of Unmanned Air Vehicles Developments.” Oct., 15-17, Kiev, Ukraine, pp. 189-192, 2013.

Balakrishnan, V.; Boyd, S. “On computing the worst-case peak gain of linear systems,” Systems and Control Letters. 1992. Vol. 9(4). pp.265-269.

Powell, M. I. D.; Nonlinear Optimization. New York: Academic Press. 1981.

Kiefer, I. “Optimum sequential search and approximation methods under minimum regularity assumptions.” J. SIAM. 1956. Vol. 5(3), pp. 105-136.

Tempo, R.; Bai, E. W.; Dabbene, F. “Probabilistic robustness analysis: explicit bounds for the minimum of samples.” Syst. Control Lett. 1997. vol. 30. pp. 237-242. Received